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a b s t r a c t

Life insurers use accounting and actuarial techniques to smooth reporting of firm assets and liabilities,
seeking to transfer surpluses in good years to cover benefit payouts in bad years. Yet these techniques
have been criticized as they make it difficult to assess insurers’ true financial status. We develop stylized
and realistically-calibrated models of a participating life annuity, an insurance product that pays retirees
guaranteed lifelong benefits along with variable non-guaranteed surplus. Our goal is to illustrate how
accounting and actuarial techniques for this type of financial contract shape policyholderwellbeing, along
with insurer profitability and stability. Smoothing adds value to both the annuitant and the insurer, so
curtailing smoothing could undermine the market for long-term retirement payout products.

© 2016 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license
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1. Introduction

Life insurers are permitted to employ both accounting and
actuarial techniques to smooth surpluses earned in good years,
in order to support benefit payouts to policyholders in bad years.
To this end, insurers have a long history of reporting asset values
at historical costs rather than fair market values in their financial
statements. Moreover, actuaries regularly use a buffer fund on the
liability side of the life insurer’s balance sheet to smooth payout
streams over time. Nevertheless, such smoothing techniques have
recently come under fire. For instance, they have been criticized
for being nontransparent, making it difficult for shareholders,
policyholders, and regulators to assess insurers’ financial status
(Jørgensen, 2004; Guillen et al., 2006). These critiques have also
become particularly important in view of life insurers’ difficulties
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in the present low interest rate environment (Gründl, 2013; Ng and
Schism, 2010).

This paper explores how these smoothing techniques affect
lifetime payout annuities offered by life insurance companies
and purchased by retirees to provide a steady stream of pension
income. The predominant form of these payout products is the
with-profit or participating payout life annuity (PLAs), which
provides retirees with a guaranteed benefit for life along with
variable, non-guaranteed payments that depend on investment
returns and mortality experiences of the insurance pool (Maurer
et al., 2013b).1 Accordingly, the particular return and mortality
trajectory has immediate consequences for the benefit stream
provided by the annuity. Our goal is to examine how the smoothing
techniques employed by actuaries and accountants shape the risk

1 For a detailed discussion of participating life insurance and alternative
approaches to distribute surpluses see, among others, Kling et al. (2007), Gatzert
(2008), Bohnert and Gatzert (2012) and Zemp (2011). Risk-neutral pricing of such
products is discussed in Briys and de Varenne (1997) and Grosen and Jørgensen
(2000, 2002), among others.
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and return profiles of PLA payout streams, as well as insurer
profitability and solvency.

Accounting smoothing in the insurance context values assets
at historical cost rather than at fair market value. This practice
helps shield insurer balance sheets and income statements against
capital market volatility. Additionally, surpluses to be shared with
policyholders are conventionally computed using realized gains
and losses. In contrast, those pressing for fair market valuation
of insurer assets seek to determine and distribute surpluses
generated by unrealized as well as realized gains and losses.
Of course this introduces additional volatility into the insurer’s
balance sheet which could undermine insurer profitability and
erase the appeal of retirement annuities. In addition to accounting-
related asset return smoothing, life insurance actuaries regularly
smooth surplus payouts using a buffer fund on the liability side
of the insurer’s balance sheet, known as the contingency reserve
position.

For firms outside the insurance sector, international and general
US accounting standards have moved from historical cost to
fair market valuation, requiring that firms’ financial statements
report both liabilities and assets at market values. According to
US Financial Accounting Standard FAS 157, fair market values
(FMV) are measured as quoted prices from orderly transactions
of identical assets in active markets, or on a mark-to-model
approach.2 When assets are recorded at fair market values,
unrealized gains and losses influence company balance sheets
and can also impact their income statements. FMV proponents
contend that mark-to-market prices improve transparency since
they reflect current market conditions, depict the true financial
status of the insurer, and provide an effective early warning
mechanism for investors, creditors, and regulators (Bleck and Liu,
2007). This allows capital providers to evaluate the ex-ante risk and
return profile of a potential investment in the firm and to monitor
the use of its capital by managers ex post (cf., Beyer et al., 2010).
Opponents argue that FMV can be misleading for assets held to
maturity, may not be reliable if based on model prices, and could
lead to undesirable firm actions. In the context of banks, Allen
and Carletti (2008) and Sapra (2008) argue that mark-to-market
valuation of illiquid assets can result in fire sales, downward
spirals, as well as contagion between financial institutions in a
financial crisis. Heaton et al. (2010) show, in a general equilibrium
context, how mark-to-market accounting can negatively impact
the real economy during a financial crisis.3

The key role of smoothing rules for the pension industry has
generated some research investigating how these approaches in-
fluence retirement payouts and insurance company shareholders
(cf., Grosen and Jørgensen, 2002; Jørgensen and Gatzert, 2015). In
point of fact, smoothing permits losses to be deferred, but when
assets must be sold to pay the benefits (and losses realized), this
can trigger large reductions in benefit payments and challenge
firm solvency. Smoothing also defers gains, andwhen the gains are
realized, benefits can increase due to the larger value of the contin-
gency reserve. To analyze these behaviors in terms of both policy-
holder wellbeing and insurer profitability, we develop a model of
a participating life annuity to show how using historical cost ver-
sus fair market valuation of assets can shape outcomes, along with
a contingency fund for liabilities. We illustrate how such actuarial
and accounting techniques can be welfare-enhancing, in that risk-
averse consumersmay benefit substantiallywhen insurers smooth
asset and longevity surprises.

2 A similar definition is used according to International Accounting Standards
(IAS).
3 Nevertheless Laux and Leuz (2010), using data on US banks, found no evidence

that fair-value accounting created or exacerbated the severity of the 2008 financial
crisis.
Our paper is related to the debate in the accounting literature
about the pros and cons of fair market value accounting (FMA) ver-
sus historical cost accounting (HCA). In the US, most life insurance
companies follow statutory accounting principles recommended
by National Association of Insurance Commissioners (NAIC), which
generally allow the recording of assets at historical costs.4 Ac-
cording to HCA, asset values are reported at purchase prices and
updated later for amortization, but not for increases in market val-
ues (cf., Laux and Leuz, 2009, 2010). When market values decline,
write-downs depend on how assets are classified in conjunction
with an impairment test. For assets classified as ‘‘available for sale’’,
write-downs are required, while those classified as ‘‘held-to matu-
rity’’ are only written down when declines are perceived as non-
temporary. There is some discretion for the company to classify
assets across these categories. Exactly how these practices affect
insurer behavior is, as yet, not well understood. Ellul et al. (2013)
provide evidence that HCA led US insurers to engage in strate-
gic trading during the financial crisis, seeking to protect their sol-
vency capital.5 And the Society of Actuaries (2013) has noted that
smoothing methods are important for ‘‘what financial results get
disclosed in terms of funding rules, reported values, and statutory
reporting’’.6

Our paper also builds on a growing literature regarding
how households can use life annuities as retirement income
instruments in a private account funded pension system.7 To
date, however, these studies have focused mainly on the demand
side, analyzing the welfare implications of having access to
various types of life annuities and investigating when to optimally
purchase life annuities.8 Few have examined the relationship
between accounting and actuarial policies, and insurer supply of
these products.9 Moreover, most studies of household portfolio
choice and annuitization have focused on fixed payout annuities,
where the insurer takes on all capital market as well as mortality
risk. Fewer studies have evaluated investment-linked/unit-linked
annuities where the insurer passes on the investment risk to the
policyholder, and also the longevity risk can be shared between
the annuitant and the insurer.10 Most interesting is the case of
participating annuities, which offer retirees access to themortality
credit as well as a smoothed payout stream over their remaining
lifetimes.

Inwhat follows,we provide a coherent analysis of PLAs from the
perspective of the annuity purchaser and the insurer providing the
annuity, and we examine how different accounting and actuarial
rules influence results. Our goal is to show how these rules shape
consumer utility and insurer profitability. To this end, we first
discuss benefit smoothing within a stylized two-period model.
Subsequently, we develop a full-fledged, realistically calibrated,
stochastic asset–liability model of a life insurance company that

4 For a comprehensive discussion of accounting for insurance companies see,
e.g., Herget et al. (2008) and Lombardi (2009).
5 Specifically, they concluded that life insurers sought to shore up capital by

selectively selling assets with high unrealized gains, whereas property and casualty
firms did not.
6 While not our primary focus here, in a related discussion, the debate continues

over what interest rate should be used to discount guaranteed annuity payments
from pension plans (cf., Hann et al., 2007; Comprix and Muller, 2011; Jørgensen,
2004; Novy-Marx and Rauh, 2011).
7 Work in the area includes Brown et al. (2001), Davidoff et al. (2005), Milevsky

and Young (2007) and Horneff et al. (2010).
8 Other researchers seek to explain why few households annuitize; see Inkmann

et al. (2011).
9 In a recent paper, Koijen and Yogo (2015) study the impact of financial and

regulatory frictions on the supply side of life insurance.
10 See Piggott et al. (2005), Denuit et al. (2011), Richter and Weber (2011) and
Maurer et al. (2013a).
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offers a PLA, and we show how using historical cost versus fair
market valuation of assets andmaintaining a buffer fund influence
both policyholder welfare and insurer profitability. The findings
are likely to be of substantial interest to policymakers seeking to
spur growth in the annuity market to enhance old-age security
for those needing to manage their 401(k) plan drawdowns in
retirement.11

2. A stylized model of a participating life annuity with payout
smoothing

2.1. Setup

To fix ideas, we first devise a simple two-period model
of a stylized PLA to illustrate the circumstances under which
smoothing annuity payouts over time can increase annuitants’
lifetime utility and add value to the insurer. The model setup is
as follows: at time t = 0, an individual purchases a PLA that, in
the absence of payout smoothing, promises to pay the value of one
fund unit (FU) at time t = 1 and t = 2, subject to the annuitant
being alive.12 For notational convenience, we assume that the
individual survives to t = 1 with certainty and to t = 2 with
probability p. Under this assumption, and based on the actuarial
equivalence principle, the premium charged by the insurer per PLA
sold amounts to (1 + p) S0, where S0 is the value of one FU at time
t = 0. On selling the PLA to N annuitants, the insurer’s initial
reserves amount to N · (1 + p) FUs. Due to benefit payouts, these
reserves will decrease by N FUs at time t = 1, and by N · p FUs at
time t = 2, leaving the insurer with depleted reserves at the end
of the model horizon.13

As time progresses, the FU value changes according to a
binomial process: each period, it can either increase or decrease
by a proportional factor u or d. Consequently at time t = 1, the FUs
may be worth either Su = u ·S0 or Sd = d ·S0, while at time t = 2,
their value may be Suu = u2

·S0, Sud = ud · S0, Sdu = du · S0, or
Sdd = d2 ·S0. Since PLA payouts are denominated in FUs, these price
fluctuations (capital market movements) directly affect benefits
paid to annuitants. By contrast, the insurer is not at risk, because
capital market risk is hedged by investing the collected premiums
into the FUs underlying the PLA.

To mitigate the impact of FU price risk on annuity payouts,
we now introduce a smoothing factor y (∈ [0; 1]), representing
the fraction of a FU that is deducted from (added to) the regular
payout every time the FU value has increased (decreased) in the
prior period. If, for example, the FU value increased to Su at t =

1, the annuitant receives a payout of only (1 − y) FUs, worth
(1 − y) · Su. If, on the other hand, the FU value decreased to Sd,
the annuitant receives a payout of (1 + y) FUs, worth (1 + y) ·Sd.
Correspondingly, at time = 2, if the FU value increases from Su
to Suu, the payout is (1 − y) Suu. Any FUs not paid out after a
price increase are retained by the insurer, while the insurer must

11 For instance, Mark Iwry, senior adviser to the US Secretary of the Treasury
and Deputy Assistant Secretary for retirement and health policy, has stated that
‘‘[o]ne solution is to provide for a predictable lifetime stream of income, such as an
annuity provided under a retirement plan or IRA. By pooling those who live shorter
and longer than average, everybody can essentially put away what’s necessary to
reach the average life expectancy, and those who live longer than average will be
protected’’ (Steverman, 2012).
12 Fund Unitsmay represent amutual fund or a single asset such as a stock. Hence,
our model PLA can also be regarded as a unit-linked annuity. As we restrict our
analysis to a 2-period model, we posit that the annuitant does not live to t = 3.
13 This requires a sufficiently large number N of annuitants, such that the insurer
can perfectly eliminate individual longevity risks through pooling. Moreover, this
requires that the survival probability p is deterministic and known at time t = 0.
Hence, we abstract from systematic mortality risk.
cover the additional payouts triggered by price drops.14 Fig. 1
summarizes the alternative developments of the FU price and the
corresponding evolution of annuity payouts and reserves held by
the insurer after payouts are made.

This smoothing process reduces payout volatility, although
it also reduces the expected benefit since the value of the FUs
withheld in good states exceeds the value of the additional FUs
received in bad states. From the annuitant’s perspective, this
may be appealing depending on the utility-maximizing smoothing
factor y. Concurrently, the insurer’s position is no longer risk-free.
That is, in the absence of smoothing (i.e. y = 0), the insurer’s
reserves are always depleted after the final annuity payouts have
beenmade. With smoothing, however, the insurer will either have
some FUs left or be some FUs short at time t = 2, depending
on how the capital market develops. Hence, from the perspective
of the insurer, the question is whether the potential gains from
retaining someFUs in up-states compensate sufficiently for the risk
taken.

2.2. Deriving the optimal smoothing factor

Next we take the annuitant’s perspective and derive the
smoothing factor y thatmaximizes utility. To this end,weposit that
the annuitant’s preferences can be described by a time-separable
constant relative risk aversion (CRRA) lifetime utility function
defined over consumption:

U0 = Eπ
0


β ·

C1
1−γ

1 − γ
+ β2

· p ·
C1−γ

2

1 − γ


, (1)

with consumption C1 (C2) at time t = 1 (t = 2) equal to the PLA
payouts, a coefficient γ of relative risk aversion, a time preference
of β , and a probability of survival of p to t = 2. Here, Eπ

0 is the
expectation at time t = 0under the subjective probabilitymeasure
π , with πu (πd = 1 − πu) representing the subjective probability
for an increase (decrease) in FU prices.

Substituting the PLA payout stream described in Fig. 1 into
the lifetime utility function and maximizing it with respect to the
smoothing factor y, we get15:

y =
A

1
γ − B

1
γ

A
1
γ + B

1
γ

(2a)

with

A = d1−γ
·

πd + β · p


u1−γ

· πud + d1−γ
· π2

d


B = u1−γ

·

πu + β · p


u1−γ

· π2
u + d1−γ

· πdu


.
(2b)

If A > B, the smoothing factor y is positive, i.e. smoothing will
increase utility. For risk-averse investors with a typical coefficient
of relative risk aversion of γ > 1, smoothing will be appealing
when the subjective probability for amarket downturn (πd) and/or
the volatility of FU prices (i.e. the difference between u and d)
are sufficiently high. In these situations, the potential utility loss
from a capital market downturn cannot be compensated by the
possible utility gain resulting from an increase in FU prices. Hence
the annuitant will be willing to give up some upside potential as
insurance against adverse capital market developments, as wewill
discuss more fully below.

14 This smoothing approach is a simplified version of the Danish Time Pension
smoothing approach examined by Guillen et al. (2006, 2013), Jørgensen and
Linnemann (2011), and Linnemann et al. (2015). We saymore about this product in
Section 5.
15 See Online Appendix 1 for details.
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Fig. 1. Stylizedmodel of participating life annuity with payout smoothing. Notes: Evolution of Fund Unit (FU) prices, annuity benefits, and insurer reserves over two periods
if smoothing is applied. The number of individuals N , the smoothing factor y, the two-year survival probability p, the initial price of the FU S0 , and the FU prices in the
following periods Su, Sd, Suu, Sud, Sdu and Sdd , with Sdu = d · u · S0 .
Source: Authors’ illustration; see text.
Turning to the insurer’s perspective, we next identify the
smoothing factor that maximizes the value for the PLA provider.
The insurer’s gains/losses from smoothing PLA payouts depend on
the number and value of the FUs remaining at time t = 2 (see
Fig. 1). This payoff profile resembles a complex derivative strategy,
a combination of two path-dependent options, which can be repli-
cated by a dynamically rebalanced portfolio of the risky asset and
(risk-free) cash. Consequently, it can be priced using risk-neutral
valuation. Following this approach, it can easily be shown that the
value VI0 the insurer receives from payoff smoothing is given by:

VI0 =
N (1 + p) S0 · [q2 · u2

− ( 1 − q)2 · d2]

(1 + i)2
· y, (3)

with risk-free interest rate i and a risk-neutral probability of an up-
ward jump q. The value generated for the insurer is a linear function
of the smoothing factor y; it is increasing in the smoothing factor
as long as the term in the squared brackets is positive. This is the
case as long as the following relation between u and d holds16:

(1 + i) · u
2u − (1 + i)

> d. (4)

The insurer profits from rising FU prices, since more valuable FUs
will be retained. Hence the gains increase with the probability that
FU prices increase. At the same time, higher FU price volatility
(i.e. the difference between u and d) will also increase the insurer’s
profit, inasmuch as the value of potential FU subsidies decreases
when the value of potential FU withholdings increases.

In summary, this example shows that PLA payout smoothing
adds value to both annuitant and insurer, as long as certain
restrictions are met with respect to possible capital market
developments, and as long as the annuitant believes that FU prices
will drop with a particular probability.

2.3. Numerical example

To provide additional insight into the conditions under which
smoothing is beneficial as well as the magnitude of the optimal
smoothing factor, we next use reasonable calibrations for the
parameters involved to evaluate analytical solutions for the

16 Under the typical assumption d = 1/u, this inequality is always fulfilled (see
Hull, 2000, ch. 9.7, for details on how to calibrate a binomial model to historical
data).
Fig. 2. Threshold subjective probability of downward jumps necessary to value
smoothing. Notes: Participating Life Annuity (PLA) policyholder’s subjective
probability π∗

d for a capital market downturn beyond which PLA payout smoothing
is utility increasing for alternative levels of relative risk aversion (γ ). Calibration:
time preference rate: β = 0.96, 2-period survival probability: p = 0.8. Capital
markets: Fund unit (FU) price may increase (decrease) by a proportional factor of
u (d = 1/u).
Source: Authors’ calculations; see text.

framework just laid out. We assume that the annuitant has a time
preference rate of β = 0.96. The probability of survival to t = 2
is set to p = 0.8, which is approximately the 10-year survival
probability of aUSmale aged 65 in 2013.With respect to the capital
market, we study two calibrations: a lower volatility regime with
u = 1.2, and a higher volatility regime with u = 1.3 (in both cases
d = 1/u). The first value corresponds to the development of annual
total returns on the S&P 500 over the period 1981 through 2012,
while the second value focuses on the recent financial crisis and
limits the calibration period to 2008 through 2012.

We seek to determine the subjective threshold probability of a
market downturn π∗

d , beyond which smoothing will be beneficial
for the annuitant. To find this threshold, we equate A and B in
Eq. (2b) and solve for the subjective probability. Fig. 2 presents the
results for a range of risk aversion values γ and the two capital
market specifications discussed above.

As one would expect, the threshold probability is decreasing in
the level of risk aversion. If payout smoothing is to increase util-
ity, an annuitant with a low risk aversion of γ = 2 must believe
that markets will drop with a probability of around 40% or more.
Conversely, a very risk averse annuitant with γ = 10 benefits
from smoothing even if he believes that there is a 95% probability
that the markets will go up. With γ = 5, our baseline calibration
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Table 1
Stylized two period model of a participating life annuity (PLA) with smoothing.
Source: Authors’ calculation; see text.

Annuitants’ optimal smoothing
factor y (in %)

Welfare gains from optimal
smoothing (in %)

Insurers’ gains from
optimal smoothing (in %)

πd = 0.2 πd = 0.5 πd = 0.2 πd = 0.5 πd = 0.2 πd = 0.5

Low volatility capital market scenario (u = 1.2)
γ = 2 0 9.1 0 0.8 0 0.8
γ = 5 0.7 14.5 0.01 4.9 0.1 1.3
γ = 10 11.9 16.3 3.6 9.9 1.1 1.5

High volatility capital market scenario(u = 1.3)
γ = 2 0 13.0 0 1.7 0 1.7
γ = 5 13.1 20.7 0.3 9.5 1.7 2.7
γ = 10 18.1 23.2 10.0 16.8 2.4 3.0

Notes: Annuitants’ utility-maximizing smoothing factor y (in %), corresponding welfare gains for annuitants (percentage
increase in certainty equivalent fixed life annuity), and corresponding gain for the insurer (in % of the PLA premium).
Calibration: time preference: β = 0.96, 2-period survival probability: p = 0.8. πd represents the annuitant’s subjective
probability of a capital market downturn, γ represents the coefficient of relative risk aversion. Capital markets: Fund unit
(FU) price may increase (decrease) by a proportional factor of u (d = 1/u).
in subsequent analyses, the annuitant has a threshold probability
of π∗

d = 18.9% (10.9%) in the low (high) volatility regime with
u = 1.2(1.3).

Table 1 presents utility-maximizing smoothing factors y, the
corresponding welfare gains for the annuitant, and the profits the
insurer can generate by offering such a PLA.We show these for our
two capital market calibrations for individuals with low, medium,
and high risk aversion (γ = 2, 5, and 10), and for two subjective
probabilities of market downturns (πd = 0.2 and 0.5). These
latter probabilities are derived by calibrating our binomial model
to historical returns on the S&P500, with the probability of 20%
(50%) corresponding to observations over the period 1981 (2008)
through 2012.

Results in Table 1 show that our baseline annuitant with
medium risk aversion will optimally chose a PLAwith a smoothing
factor of 0.7%, when he faces both low volatility and a low
probability of a market downturn. This results in a small welfare
gain of about one basis point, measured in terms of an increase
in the certainty-equivalent fixed life annuity. An insurer offering
such a PLA can generate a profit in the amount of 0.1% of the PLA
premium. As indicated in Fig. 2, the subjective market downturn
probability of 20% is only marginally above the threshold value
beyond which smoothing is beneficial, which explains the modest
amount of smoothing in this case. If, by contrast, the individual is
exposed to a capital market having higher volatility and a higher
(subjective) probability of a market downturn, he will elect a PLA
with a much larger smoothing factor, 20.7%. In other words, the
annuitantwould bewilling to forfeit one-fifth of his benefit in good
times, so as to have his payout increased by the same fractionwhen
markets go down. Such a PLA generates awelfare gain of about 9.5%
and a profit for the insurer of 2.7% of the annuity premium. Not
surprisingly, in all scenarios, more risk averse individuals choose a
higher level of smoothing.While the less risk averse donot demand
smoothing in a normal capital market environment, in a high
volatility scenario such as the present, they prefer a substantial
smoothing factor of 13% for a welfare increase of 1.7%.

This simplified two-period model illustrates how PLA payout
smoothing can be beneficial for both the annuitant and the insurer
where benefit payments are linked to the value of the underlying
fund units, meaning capital market risk is smoothed. Nevertheless
we have not yet considered mortality risk, so next we turn to a
more complete framework. This extends our model to incorporate
mortality, and to generalize it to more periods and more assets.
Most importantly, we allow two methods of smoothing using
both actuarial and accounting techniques, and we examine their
tradeoffs.
3. Smoothing in a more complex participating life annuity
contract

3.1. Setup and product design

To illustrate how payout smoothing works in a more realistic
setting, we construct a model of a stylized life-insurance company
that sells single premium participating life annuity contracts.
In addition to realistic accounting and actuarial smoothing
techniques, we incorporate capital market risk, and systematic
as well as idiosyncratic mortality risk. Our stylized product is
closely modeled on the traditional annuity offered by the Teachers
Insurance and Annuity Association (TIAA), one of the most
important life insurance companies operating in the US market.17

The product on which we focus is a participating life annuity
(PLA) which provides retirees with lifetime guaranteed benefits
plus non-guaranteed surplus payments.18 To price the guaranteed
benefits, the company uses a specific mortality table in combina-
tion with an assumed interest rate to discount benefits (also called
the guaranteed interest rate). The non-guaranteed surplus is deter-
mined annually by the insurer’s Board of Trustees as a percentage
of the guaranteedbenefit andpaid to annuitants the following year.
The potential to generate surpluses stems from two sources: the
insurer’s experience on investment returns, and the realized annu-
itant pool mortality. When the return on the insurer’s asset portfo-
lio backing the liability due to promised annuity benefits exceeds
the guaranteed interest rate, and/or if realized annuitant mortality
is higher than expected, the insurance company earns a surplus.
The company can influence the expected risk and return profile
of uncertain surplus payments by its choice of assets in its port-
folio. In addition, the insurance company can smooth policyholder
surpluses. To this end, accounting smoothing based on accounting
standards, and actuarial smoothing based on building up reserves,
both play central roles.

Accounting smoothing arises from the fact that unrealized gains
and losses on assets are not used to calculate the investment re-
turn used to specify policyholder surpluses. In the US, most life

17 In 2012, TIAA supervised 3.6 million annuity contracts and managed assets
of $487B. In the European market, participating life annuity products are offered
comparable to the TIAA product outlined in the text; see Maurer et al. (2013b) for
a detailed discussion.
18 The TIAA Traditional Annuity also builds up capital during the accumulation
phase, whereby contributions paid by policyholders earn a minimum guaranteed
yearly interest rate (depending on the vintage when premiums are paid) plus a
non-guaranteed surplus. Here we concentrate only on the liquidation phase of the
product.
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insurance companies follow statutory accounting principles rec-
ommended by National Association of Insurance Commissioners.
These are specific accounting guidelines for insurers which permit
the companies to value their bond portfolios in their annual state-
ments using the historical cost approach. That is, these assets are
recorded at their prices when purchased, and values are not up-
dated for (non-credit related) changes in market values as long as
they are unrealized.19

Actuarial smoothing results from withholding a part of the sur-
plus earned in good years to support surplus payments in bad
years. To this end, the insurer is permitted to build a special
position on the liability side of its balance sheet, the so-called con-
tingency reserve. Allocations into and withdrawals from the con-
tingency reserve are governed by the insurer’s Board of Trustees
with guidance from the firm’s actuaries.

In what follows, we introduce our realistically-calibrated
company model for a pool of PLA policyholders with uncertain
capital markets and mortality dynamics incorporating the above
mentioned institutional features. Our goal is to spell out the
implications of these various smoothing techniques from the
perspective of the policyholder (i.e. the benefit stream) and the life
insurance company (i.e., profitability and solvency), within such a
realistic setting.

3.2. The insurance provider

We assume that the insurance company sells PLA contracts
paying guaranteed lifetime benefitsGB to I0 individuals of the same
age x (i.e. the pool is closed after the sale). The premium Pt per
contract paid at time t is calculated according to:

Pt = GB ·

ω−(x+t)
k=0

kpAx+t

(1 + GIR)k
. (5)

Here kpAx =
k−1

i=0 (1 − qAx+i) is the k-period survival probability
at age x, the qAx are actuarial mortality rates used in the industry,
and ω is the terminal age of the mortality table. GIR refers to
the firm’s guaranteed interest rate.20 To reflect the guaranteed
annuity payment obligations, the insurance company builds a
special reserve position on the liability side of its balance sheet,
called the actuarial reserve. At time t = 0, the actuarial reserve is
equal to the total premium collected, i.e. V0 = P0 · I0. Multiplying
the surviving number of annuitants It by the present value of
remaining benefits, given in Eq. (5), describes the evolution of the
actuarial reserve in subsequent years, Vt = Pt · It .

The insurer invests the total premium collected into a portfolio
of dividend-paying stocks and bonds paying coupons. This
portfolio is recorded as the General Account on the asset side of the
balance sheet of the insurance company, and at t = 0, it is equal
to the actuarial reserve. At the beginning of each subsequent year,
the insurance company pays annuitant benefits from asset income
(dividends/coupons) and from assets sold at market prices. The
stochastic dynamics of the market prices of stocks are governed
by a geometric random walk with drift and the evolution of
bond prices is driven by a 3-Factor CIR term structure model (see
Appendix A).

Depending on the insurer’s investment and mortality experi-
ence, annuitantsmay receive surplus payments in addition to their

19 See Lombardi (2009) for further details on valuation requirements. Also, under
NAIC rules, insurers may discount the liabilities resulting from the guaranteed
benefit with a fixed interest rate specified at the beginning of the contract (i.e. the
guaranteed interest rate). See for instance TIAA-CREF (2011).
20 Here and throughout the analysis, we disregard explicit costs in terms of
loadings, as these are not critical to our model.
guaranteed benefit. This surplus is generated when the insurer’s
total investment return exceeds the GIR, and/or when actual pol-
icyholder mortality exceeds that assumed when the annuity was
price. The determination of the actual surplus generated by the in-
surer and, hence, the amounts paid out to annuitants, depend on a
complex set of rules specified by the insurance company, to which
we turn next.

The total annual surplus TSt generated by the insurer is given
by:

TSt = MSt + ASt , (6)

where the mortality surplus is MSt and ASt refers to the asset
surplus. The mortality surplus arises when part of the actuarial
reserve set aside to cover guaranteed benefits is freed up after
more than the anticipated number of policyholders dies in a certain
period. Formally, mortality surplus is calculated as:

MSt = Vt+1 ·


It − It+1

It
− qAx+t


, (7)

where Vt is the actuarial reserve for the surviving annuitants. It
represents the stochastic number of living annuitants at time t and
is given by:

It =

n
i=1

I it . (8)

Here, I it represents an indicator variable I it which takes the value
of one if the annuitant i (i = 1, . . . , n; n = I0) is alive at time t ,
and 0 if the annuitant has died. Over time, the sequence of indicator
variables I it for each annuitant i forms a Markov chain with:

P

I it+1 = 1|I it = 1


= 1 − qPx+t = pPx+t ,

P

I it+1 = 0|I it = 1


= qPx+t ,

P

I it+1 = 0|I it = 0


= 1,

(9)

where qPx+t is the actualmortality rate of annuitants of age x at time
t . Actualmortality rates can differ from those used to price the PLA,
as they are stochastic; their dynamics aremodeled as in Cairns et al.
(2006) (see also Appendix A). Accordingly our model incorporates
both idiosyncratic longevity risk (uncertainty about individual
lifetimes), and also systematic longevity risk (uncertainty about
the mortality table).

The insurer’s asset surplus naturally depends on the stochastic
dynamics of the underlying stock/bond portfolio, and also on how
the insurer values the assets. The relevant valuation method is
determined by the accounting category into which each asset
is classified. According to US Generally Accepted Accounting
Principles, three asset categories are allowable: assets held to
maturity, assets held for trading purposes, and assets available
for sale (see e.g., Herget et al., 2008). Assets held to maturity are
valued at amortized cost when acquired (historical cost valuation,
or HCV); in this case, changes in asset prices are only recognized
as gains or losses when the instruments are sold. Assets held
for trading purposes are reported at fair market value, so price
changes immediately affect the insurer’s profits whether or not
they are realized.21 Assets available for sale are also reported
at FMV, yet unrealized gains and losses resulting from market
price fluctuations are not stated in the insurer’s profit and loss
statement (P&L). Instead, they are carried in a separate account
on the liability side of the insurer’s balance sheet, known as the

21 Under US GAAP, the default category of bonds (stocks) refers to those available
for sale (held for trading) purposes. By contrast, under NAIC accounting, bonds are
classified as held to maturity by default.
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Other Comprehensive Income account (OCI).When these assets are
sold, the OCI account is reversed, and realized gains or losses are
recorded in the P&L.

Formally, when using FMV, the insurer’s investment return on
stocks, iS, FMV

t and on bonds, iB, FMV
t , is given by:

iS,FMV
t =

nS,t−1 · (St − St−1) + nS,t · Dt

(Vt − It · Lt)
(10a)

iB,FMV
t =

nB,t−1 · (Bt − Bt−1) + nB,t · Ct

(Vt − It · Lt)
(10b)

where nB,t (nS,t ) denotes the number of bond fund units (stocks)
held in year t; Bt (St ) refers to the price of the bond fund unit
(stock) at time t; Ct (Dt ) is the coupon (dividend) payment received
on each bond fund unit (stock); and Lt represents payments
to individual annuitants. As indicated above, Vt is the actuarial
reserve, and It is the number of policyholders in the pool.

Under the historical cost valuation method (or the other
comprehensive income valuation approach), the corresponding
returns iS,HCVt and iB,HCVt are calculated as:

iS,HCVt =


nS,t−1 − nS,t


· (St − S0) + nS,t · Dt

(Vt − It · Lt)
(11a)

iB,HCVt =


nB,t−1 − nB,t


· (Bt − B0) + nB,t · Ct

(Vt − It · Lt)
(11b)

with

nS,t−1 − nS,t


the number of stocks sold, and


nB,t−1 − nB,t


the number of bond units sold. According to the OCI approach,
unrealized gains and losses from price fluctuations are neutralized
using the OCI account, which develops according to OCI t = OCI t−1
+ nS,t−1 · (St − St−1) + nB,t−1 · (Bt − Bt−1) where OCI0 = 0.
Therefore, investment returns are given by Eqs. (11a) and (11b).

To some extent, life insurers may choose between the various
valuation methods for their asset holdings. Naturally their choices
have consequences for the asset surplus of the participating
annuity. To study the impact of categorizing assets into different
accounting valuation regimes, we define two parameters, αS and
αB, that specify the fraction of stocks and bonds valued using HCV
(or OCI). Given those ratios and asset returns, the insurer’s realized
total investment return iTOTALt is calculated as:

iTOTALt = (1 − αS) · iS,FMV
t + αS · iS,HCVt

+ (1 − αB) · iB,FMV
t + αB · iB,HCVt . (12)

Based on realized total investment returns, the firm’s asset surplus
for the pool is determined by:

ASt = (Vt − It · Lt) ·

iTOTALt − GIR


. (13)

After the period’s total surplus, TSt , is determined, it must be
distributed among annuitants and the insurer. To this end,we posit
that the annuitants receive a fixed allocation percentage ap subject
to several constraints. Since the insurance company guarantees
lifelong minimum benefits, policyholders do not participate in
negative surpluses. Consequently negative surpluses directly
decrease the insurer’s equity capital. In addition, the level of
surplus depends on the insurer’s solvency capital, which includes
three components: the insurer’s equity capital, the value of its OCI
account, and its contingency reserve. When the insurer’s solvency
capital exceeds a pre-specified solvency limit, an amount ap ·

TSt is allocated to the policyholders; consequently, the insurance
company keeps (1 − ap) · TSt of the surplus. When the insurer’s
solvency capital falls below the limit, we posit that ap is reduced
by 50%, i.e. only 0.5 · ap · TSt is allocated to the annuitants. The
insurer thus retains the total surplus if no equity capital remains.22
Accordingly, the portion of total surplus allocated to policyholders,
DSt , is given by:

DSt =


max (0; ap · TSt) ,

if Et + OCI t + CRt > sl · Vt and Et ≥ 0
max (0; 0.5 · ap · TSt) ,

if Et + OCI t + CRt ≤ sl · Vt and Et ≥ 0
0, if Et < 0

(14)

where Et is the insurer’s equity,OCI t is the value of the OCI account,
and sl is the solvency limit, defined here as a fraction of the
actuarial reserve. The surplus DSt is allocated to the contingency
reserve CRt .

Next, the insurance company must determine how much
surplus to pay to the annuitants, defined as PSt , and how much to
retain in the contingency reserve. Typically this decision is made
by the firm’s Board of Trustees and informed by the insurer’s
chief actuary; the goal is to smooth annuitant payouts over time,
given each year’s realized surplus and the level of the contingency
reserve.While the specifics of the decision process are not formally
prescribed, we can characterize it using an algorithm which
embodies both a backward- and a forward-looking component. By
the backward-looking component, the current payout should be
set in such a way that it is as similar as possible to the previous
year’s payout. The forward-looking element seeks to preserve this
surplus stability in future years as well; this is implemented by
maintaining a certain target level of the contingency reserve. To
balance these two, the insurer will determine PSt such that the
following objective function is maximized:

max
PSt

f (PSt) + g(CRt) (15a)

where

f (PSt) = −


PSt

PSadjt−1

−
DSt − PSadjt−1

PSadjt−1

2

+ 2


PSt

PSadjt−1

−
DSt − PSadjt−1

PSadjt−1


(15b)

g (CRt) = −


CRt

CRaim
t

4

+ 4 ·


CRt

CRaim
t


− 2 (15c)

PSt
PSadjt−1

∈


1
b
; b


, b ≥ 1 (15d)

CRt = CRt−1 + DSt − PSt , CRt ≥ 0 (15e)

PSadjt−1 = PSt−1
It

It−1
. (15f)

The objective function is concave and it has two terms, the
polynomials f and g . Both functions depend on the endogenous
variable PSt and reach their maximum when the expressions
within all parentheses are equal to one. Moreover, function f
depends on two components. The term PSt/PS

adj
t−1 seeks to keep

annuitants’ surplus payouts as close as possible to the previous
period’s level, where PSadjt−1 is the previous period’s surplus payout
adjusted for the change in the size of the annuitant cohort
( I t/It−1). The term


DSt − PSadjt−1


/PSadjt−1 penalizes (rewards) the

22 We posit that the annuity provider is part of an insurance group, so if the
annuity provider’s equity capital drops below zero, the parent company brings
additional equity capital to pay guaranteed benefits. This precludes the need for
us to take on the computational burden of modeling the consequences of formal
insolvency.
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withholding of current realized surplus from annuitants when
DSt is higher (lower) than PSadjt−1. In other words, when the
current surplus falls below (is above) last year’s payout, the firm
has an incentive to reduce (increase) payouts. To avoid extreme
fluctuations in the surplus payouts, the surplus may vary only
within a predefined boundary (Eq. (15d)). For example, if b = 1.25,
the minimum (maximum) payout to each annuitant in the current
year is 80% (125%) of last year’s payout.

Function g is intended to sustain the insurer’s ability to
pay stable future surpluses. It reaches its maximum when the
contingency reserve CRt equals the target value CRaim

t , where
the latter is a fraction of the current actuarial reserve. Inserting
the transition equation (15e) into (15c) shows that the insurer
withdraws from the contingency reserve when its previous level
exceeds the target, i.e. PSt > DSt if CRt−1 > CRaim

t .
The interaction between the terms f and g reflects the tradeoff

between paying policyholders more today, versus maintaining the
insurer’s stability for the future. In a period of high surplus, the f
function would call for increased benefit payments, but this will
only be realized when the contingency reserve is high enough
(according to the g function). But if the contingency reserve is
too low, the g function inhibits the call for benefit increases.
Conversely, in a period of low surplus, benefits would be reduced
according to the f function, unless a sufficiently high level of the
contingency reserve encourages the insurer to maintain or even
increase the benefit level.23

Finally, the insurer’s next year equity capital develops according
to:

Et+1 =

[Et · (1 + R (t, 1)) + (TSt − DSt)] ·

1 − µD ,

if Et+1 + OCI t+1 + CRt > sl · Vt+1
Et · (1 + R (t, 1)) + (TSt − DSt) , else

(16)

where R (t, 1) is the 1-year government bond spot rate, and µD is
the dividend rate paid to shareholders. The dividend is only paid if
the insurer’s next year solvency capital is adequate.

3.3. The policyholder

To quantify how individuals with different risk aversion and
time preferences value the stochastic PLA income stream, we
use an expected utility framework as in Section 2. Specifically,
policyholder preferences are modeled using a time-additive
constant relative risk aversion (CRRA) utility function as follows:

U = E


ω−x
t=0

β t
tp

P
x
L(1−γ )
t

1 − γ


. (17)

Here γ denotes the consumer’s coefficient of relative risk aversion
and the discount factor β < 1 represents the individual’s subjec-
tive time preference. FollowingMaurer et al. (2013b), the expected
lifetime utility U from the PLA benefit stream is transformed into
a utility-equivalent fixed life annuity EA:

EA =

U (1 − γ )

ω−x
t=0

β t
tpPx


1

(1−γ )

. (18)

The EA can be interpreted as the constant guaranteed lifetime in-
come stream that the annuitant will require to give up the upside
potential of a PLA with stochastic surpluses.

23 For a numerical example to illustrate the functionality of the automatic
smoothing approach, see the Online Appendix 2.
4. Numerical evaluation

4.1. Setup and calibration

Next we describe the impact of actuarial and accounting
smoothing on PLA policyholder utility and insurer profitability.We
do so by simulating 5000 independent sample paths of an insurer
selling the PLA described above to a cohort of 10,000 males aged
65 in 2013. Our goal is to compare the outcome for two cases: first
where surpluses are smoothed using the historical cost approach
(accounting smoothing), and second where assets are evaluating
using historical costs andwhere actuarial reserves for liabilities are
accumulated (accounting and actuarial smoothing).

Wemodel a PLA paying a guaranteed lifetime benefit of $10,000
per year. Premiums for guaranteed benefits as well as the actuarial
reserve in later years are calculated using an interest rate of 3%
per year (similar to the TIAA Traditional Annuity), and the Annuity
2000 mortality table recommended by the Society of Actuaries
with an age shift of four years. These assumptions imply a single
premium per contract of $163,399. In addition to the guaranteed
benefits, the insurer promises to pay surpluses to the annuitants
as described above. The surplus allocation parameter specifying
how annuitants participate in total surpluses is assumed to be
ap = 90%. The surplus paid to policyholders in the first year is set
to 2% of the guaranteed benefit. Also we assume that the company
has equity capital worth 4% of the actuarial reserves, which we set
as the solvency limit in Eq. (14).24

Next we describe the firm’s initial balance sheet. The liability
side includes the actuarial reserve, the contingency reserve, and
the firm’s equity capital. Without actuarial smoothing, the initial
and targeted values of the contingency reserve are set to 0%.
With actuarial smoothing, the initial contingency reserve is set to
5% of the actuarial reserve and the target contingency reserve is
set to 10%.25 Assets backing the actuarial reserve are held in the
general account and invested in a constant-mix portfolio of stocks
and bonds with a target duration of 10 years. The asset side also
includes a cash account corresponding to the contingency reserve
and the insurer’s equity capital. This earns an interest rate equal
to the one-year spot rate given by the term structure model (see
Appendix A).

Using our simulation results, we calculate the equivalent fixed
life annuity (FLA) which would provide the same lifetime utility as
the PLA. In our base case we stipulate a relative risk aversion of
γ = 5 and a time preference factor of β = 0.96; these are subse-
quently varied in sensitivity analyses. The policyholder’s subjective
survival probabilities tpPx are derived as in Appendix A. To explore
the impact of actuarial and accounting techniques on annuitants’
benefits and firm profitability, we permit the firm to select its as-
set allocation and choice of accounting method. To this end, we
vary the asset allocation in the general account from all bonds to
all stocks, and the valuation approach from all assets at historical
cost (HCV Ratio αS = αB = 100%), to all assets at fair market (HCV
Ratio αS = αB = 0%), all in 10% steps. In sensitivity analysis, we
also allow for bonds to be valued according to the OCI instead of
the HCV approach.

4.2. The annuitant’s perspective

Fig. 3 shows how alternative smoothing approaches influence
annuitant wellbeing. Panel A involves only accounting smoothing

24 In doing so, we are informed by the TIAA-CREF 2011 financial statement which
reported equity capital of $2B and an actuarial reserve of $175B (page 6). In addition
TIAA-CREF reported valuation reserves (i.e. the difference between fair market
minus book/adjusted carrying value), which increases the effective equity capital
substantially. Since the initial valuation reserve in our model is zero, we adjust for
this using a higher equity capital ratio.
25 The TIAA-CREF 2011 financial statement reported a contingency reserve ($23B)
worth 13% of the actuarial reserve ($175B; page 6).
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Fig. 3. Effect of asset allocation versus valuationmethod on PLA policyholder utility. Notes: Utility equivalent fixed life annuity (FLA; in $000) that generates the same utility
as a Participating Life Annuity (PLA) with a guaranteed initial lifelong annual benefits of $10,000 for alternative scenarios based on a time-additive CRRA utility function.
HCV = Historical Cost Valuation, FMV = Fair Market Valuation. Calibration accounting smoothing, male aged 65 in 2013; initial guaranteed PLA benefits: $10,000; time
preference:β = 0.96; relative risk aversion: γ = 5; GIR: 3%;mortality table: ‘‘Annuity 2000’’ (PLA present value $163,399); bonds fund duration: 10 years; surplus allocation
to annuitant: 90%; equity capital endowment: 4%; solvency limit 4%; initial contingency reserve: 0%; target contingency reserve 0%. Calibration accounting and actuarial
smoothing, initial contingency reserve: 5%; target contingency reserve 10%.
Source: Authors’ calculations; see text.
but not actuarial smoothing, while Panel B adds in actuarial
smoothing. The graph on the left of each Panel depicts the benefit
that a fixed life annuity (FLA) must pay so as to generate the
same utility as the PLA with a guaranteed benefit of $10,000 plus
a variable surplus, for a range of asset allocations. The solid line
reflects FLA values under HCV accounting, while the dotted line
reflects the range of FLAs under fair market valuation. On the
right, we illustrate the utility impact of permitting intermediate or
blended accounting regimes, combining HCV and FMV in different
proportions, again for a range of asset allocations.

Specifically, when the insurer invests only in bonds, the FLA
is worth 8% more under full HCV accounting than under the
FMV method ($12,300 vs. $11,400; see Panel A1). Similar utility
increases are observed for other asset allocations. In other words,
if the only smoothing being undertaken is attributable to the
accounting approach, historical cost valuation dominates fair
market valuation from the annuitant’s perspective. Moreover,
utility rises as the fraction in bonds increases, until it turns down
after about 70%. This holds regardless of the accounting rule:
that is, diversification is beneficial, independent of the valuation
approach selected.

In Panel A2, we see that the utility-equivalent FLA surface gen-
erally slopes upward as more assets are valued using the HCV ap-
proach, given a specific bond percentage. This is because using a
higher HCV fraction lowers capital market volatility and thus gen-
erates a smoother surplus payout stream, which the policyholder
prefers. Nevertheless, using HCV alone is suboptimal because re-
turns resulting from asset price appreciation are not immediately
allocated to the surplus,which reduces the annuitant’s payout. This
is particularly relevant for stocks whose major source of return is
asset price appreciation. Consequently, it is preferable to account
for at least some of the portfolio using fair market valuation rules.
For our base case with γ = 5, the annuitant’s optimal outcome
would be for the insurer to hold 40% in bonds and use historical
cost valuation for 80% of the assets, yielding a utility level equiva-
lent to that of a fixed life annuity of almost $13,000.

Panel B illustrates how the annuitant’s perspective changes
when the insurer can smooth using both accounting and actuarial
methods. For a given portfolio allocation, Panel B1 shows that the
utility equivalent outcomes are nowmore similar between theHCV
and the FMVapproaches. Compared to Panel A1, FMVplus actuarial
smoothing results in utility increases of about 5%, independent of
asset allocation. This is because the actuarial smoothing dampens
the surplus volatility introduced by FMV. By contrast, with the HCV
approach, adding actuarial smoothing results in lower utility with
an all-bond allocation by about 2%, and by about 4% for an all-stock
allocation. In other words, too much smoothing is not preferred
by the PLA policyholder. Focusing last on the two curves in Panel
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Table 2
Utility-maximizing asset allocation and valuation methods for PLA policyholders with varying levels of risk aversion.
Source: Authors’ calculations; see text.

Relative risk aversion Accounting smoothing Accounting and actuarial smoothing
Bond percentage HCV ratio Optimal utility equivalent FLA Bond percentage HCV ratio Optimal utility equivalent FLA

Low/γ = 2 0 80 15,533 10 70 14,159
Medium/γ = 5 40 80 12,881 60 70 12,283
High/γ = 10 80 100 11,783 80 70 11,469

Notes: Optimal utility equivalent fixed life annuity (FLA; in $) with respective asset allocation percentage and book value ratio for alternative calibrations of the time-
additive CRRAutility function. Calibration accounting smoothing,male aged 65 in 2013; initial guaranteed Participating Life Annuity (PLA) benefits: $10,000; timepreference:
β = 0.96; relative risk aversion: low (γ = 2), medium (γ = 5), high (γ = 10); GIR: 3%; mortality table: ‘‘Annuity 2000’’ (PLA present value $163,399); bonds fund duration:
10 years; surplus allocation to annuitant: 90%; equity capital endowment: 4%; solvency limit 4%; initial contingency reserve: 0%; target contingency reserve: 0%. Calibration
asset and actuarial smoothing, initial contingency reserve: 5%; target contingency reserve 10%.
B1, neither valuation regime clearly dominates. When the actuary
removes substantial volatility via smoothing, the annuitant will
prefer a higher stock fraction as compared to the case without
actuarial smoothing.

As before, Panel B2 confirms that the utility-equivalent FLA
surface rises as more assets are valued using the HCV approach,
given a particular bond percentage. Nevertheless, the accounting
regime now has less of an impact on utility levels than before.
There is again an interior maximum to the surface: in our base
case with γ = 5, the annuitant would like the insurer to hold
60% in bonds and use historical cost valuation for 70% of the assets,
yielding a utility level equivalent to that of a fixed life annuity
of almost $12,300. The higher fraction in bonds not only curtails
surplus volatility, but it also reduces earnings potential; moreover,
actuarial smoothing shifts some of the surplus into the future,
which is also detrimental to utility. The somewhat lower HCV
fraction partly offsets these effects, but not by enough to generate
utility comparable to that in Panel A2.

Table 2 also presents additional optimal utility equivalent FLAs
for alternative values of risk aversion. We find the expected result,
namely that when only accounting smoothing is available, the
policyholder prefers both a higher bond fraction and a higher HCV
ratio with increasing risk aversion. Including actuarial smoothing
boosts the bond percent with no change in the HCV fraction,
confirming our earlier finding that the valuation technique
selectedmatters less in the case of actuarial smoothing. Finally, for
all risk aversion values examined, when actuarial smoothing is in
place, the policyholder can tolerate a higher share of assets valued
at fair market.26

4.3. The insurer’s perspective

Next we assess the insurer’s perspective regarding asset
valuation and smoothing methods. To this end, we calculate the
internal rate of return (IRR) on capital provided by the insurer’s
shareholders for each simulation run. This computation accounts
for the initial investment along with periodic dividend payments.
In addition, it includes what investors receive at the end of the
product’s lifespan, namely the value of equity capital, contingency

26 Given the current situation in the global government bond markets, we also
conducted the analysis using a zero percent guaranteed interest. For a given
premium, lower guaranteed interest rates result in a lower guaranteed benefits.
At the same time, the potential for surplus payments increases. Structurally, we
find results similar to those presented in Fig. 3, however, annuitants’ utility levels
generally drop. The reduction in utility is less pronounced in case of accounting
smoothing. For our baseline individual with medium risk aversion, the optimal
utility equivalent FLA drops by about 11% to 11,430. In case of both accounting
and actuarial smoothing, the optimal utility equivalent FLA drops by about 28% to
8889. This is due to the increased share of surpluses in the annuity payments. Under
actuarial smoothing, surpluses earned by the insurer are (at least partially) retained
in the contingency reserve and only paid out over a longer time period.
reserve, and any actuarial reserves that remain when the last
annuitant dies. We also consider the shortfall probability of the
insurer, defined as the percent of times that equity capital is
negativewhen the last policyholder dies. The time horizon for each
simulation run varies depending onwhen the last annuitant is gone
(a stochastic event).

Fig. 4 plots the internal rate of return and shortfall probability
as a function of the insurer’s asset allocation and the accounting
regime in place. Panel A presents results for accounting smoothing
alone, while Panel B reports findings where the accounting and
actuarial smoothing techniques are both in force. For alternative
asset allocations, Panel A1 plots the expected IRR for the two
polar cases of the pure historical cost versus pure fair market
accounting regimes. Clearly HCV dominates FMV in terms of IRR
for all portfolio allocations. Additionally, theHCVproduces positive
expected IRRs in the range of 3%–4%, whereas the FMV generates
expected IRRs of −10% for an all-stock allocation, to −0.5% for an
all-bond portfolio; the IRR is marginally positive in the middle-
range bond allocation.

Panel A2 depicts how the expected internal return responds to
alternative combinations of bonds and historical cost versus fair
value accounting. Expected IRRs are increasing in the HCV ratio, a
finding that holds for all asset allocation patterns. This occurs since
unrealized surpluses must be paid out to the annuitants under
FMV, while the insurer must bear unrealized losses which are not
passed on to policyholders. By contrast, under HCV, unrealized
losses from periods of bad performance are offset by unrealized
surpluses from good performance, thus producing a smoothed
impact on payouts. Such fluctuations reduce the value of the
options held by annuitants.Moreover, IRRs are also generally rising
with the percentage of the portfolio held in bonds, due to their
more constant payment streams.

Finally, the shading in Fig. 4 provides information about the
insurer’s shortfall probability, with darker areas representingmore
risk. Not surprisingly, holding an all-stock allocation alongwith the
FMV approach is associated with a 20%–25% shortfall probability;
the insurer’s equity capital would then be zero or negative. Moving
toward a pure historical cost valuation, as well as to more bonds,
substantially reduces the shortfall risk (to 0%).

Panel A3 reports additional information about the development
of the shortfall risk over time, illustrating the four cases of 100%
bonds/all HCV, 100% stocks/all HCV, 100% bonds/all FMV, and 100%
stocks/all FMV.Under both FMVscenarios, the insurer is exposed to
substantial shortfall risk (over 30%) early in the retirement phase,
whichdeclines thereafter. Specifically,with the all-bond (all-stock)
portfolio, the shortfall risk under fair market value falls after about
year 2, and falls to about 5 (10) percent in the long term. Under
the HCV/all-bond allocation, there is no shortfall risk, whereas the
HCV/all-stock combination provides an intermediate level (around
10%) of shortfall risk that peaks at 7–10 years and fades away
thereafter. Also, under the HCV, an all-stock portfolio has the same
shortfall risk as an all-bond portfolio under FMV. This underscores
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Fig. 4. Effect of asset allocation versus valuation method on insurer profitability and stability for a PLA product. Notes: Expected internal rate of return (IRR) and shortfall
probability of a Participating Life Annuity (PLA) with guaranteed initial lifelong annual benefits of $10,000 for alternative scenarios. HCV = historical cost valuation,
FMV = fair market valuation. Calibration accounting smoothing, male aged 65 in 2013; initial guaranteed PLA benefits: $10,000; time preference: β = 0.96; relative risk
aversion: γ = 5; GIR: 3%; mortality table: ‘‘Annuity 2000’’ (PLA present value $163,399); bonds fund duration: 10 years; surplus allocation to annuitant: 90%; equity capital
endowment: 4%; solvency limit 4%; initial contingency reserve: 0%; target contingency reserve 0%. Calibration asset and actuarial smoothing, initial contingency reserve:
5%; target contingency reserve 10%.
Source: Authors’ calculations.
the strength of the smoothing approach under HCV: that is, in
terms of shortfall risk, requiring an insurer to move from historical
cost to fair market valuation has the same impact as requiring the
insurer to hold only equity.

Turning to Panel B, where both accounting and actuarial
smoothing are available, we note that the shapes of the expected
IRR curves are similar to those presented in Panel A. Under the
historical cost method depicted in Panel B1, expected returns are
again positive for all portfolio allocations. By contrast, under FMV,
the curve is more concave than before. The impact of adding
actuarial smoothing is that fundsmust be set aside in a contingency
reserve owned by the policyholders until the last annuitant dies;
at that juncture, remaining assets are paid out to investors. This
results in higher IRRs for the investor, as can be seenwhen the firm
holds a high bond allocation.

Despite this general tendency, the insurer holding all stocks
receives a large negative expected IRR (−15%) in the FMV scenario
with actuarial intervention. By contrast, with the actuary in
place, benefit payments are less directly linked to capital market
performance. Consequently, annuity payouts can be much higher
than in the asset-smoothing-only case. In particular, benefits are
less likely to be reduced in bad times, which in turn diminishes
investors’ eventual claims. This is particularly likely when the
portfolio allocation is heavy in stocks and it can offset the investor’s
opportunity to retain the contingency reserve.

Comparing Panels A2–B2 and A3–B3, we note that shortfall
probabilities under the all-stock/FMV scenario are even higher
thanwithout actuarial smoothing, and they do not decline asmuch
with the passage of time. Thus with the all-stock portfolio, the
shortfall risk under fair market value stands at about 17% in the
long term, compared to 10% without actuarial smoothing. In other
words, we conclude that under the historic cost approach, insurer
stability and expected IRRs perform do better if the firm holds
mostly bonds. That is, fair market valuation reduces stability and
expected IRRs. Moreover, when the insurer holds mostly bonds,
incorporating actuarial smoothing raises expected IRRs and offers
some degree of protection for investors in terms of expected IRRs
and shortfall risk.

To show that investors would find acceptable the utility-
maximizing combinations of bond percentages and HCV ratios
reported in Table 2, we summarize in Table 3 the corresponding
expected IRRs, their volatilities, and shortfall probabilities. Overall,
expected IRRs are moderately positive and shortfall probabilities
are acceptably low. For example, given moderately risk-averse
policyholders, accounting smoothing alone produces an expected
IRR of 3.61% and shortfall probability of 1.58%; with actuarial
smoothing, these values are 4.85% and 0.75 respectively. A similar
pattern generally holds for other risk aversion patterns.27

5. Comparison with an alternative smoothing approach

Above, we transparently illustrated the workings of both ac-
counting and actuarial smoothing in the pension context. In
practice, however, insurers do not normally reveal to policy-
holders and regulators exactly how these strategies are imple-
mented. For this reason, some have criticized insurers for be-
ing opaque (Guillen et al., 2006). In this section, therefore, we

27 This is generally true except when very low risk aversion can produce a very
high stock allocation. When we repeat the analysis using a guaranteed interest
rate (GIR) of zero, we find that the lower guaranteed benefits result in reduced
shortfall probability for the insurer, while the expected internal rate of return
generally increases. Under accounting smoothing, our baseline calibration produces
an expected internal rate of return of 6.17% and a shortfall probability of 0.03%
(versus 3.61 and 1.58% for a GIR of 3%). With both accounting and actuarial
smoothing, due to the slower surplus payout, the insurer’s expected internal rate
of return is now 6.54% with a zero shortfall probability (versus 4.85 and 0.75% for a
GIR of 3%).
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Table 3
Impacts of optimal combination of asset allocation and valuation method on internal rates of return and shortfall probabilities: PLA policyholders with varying levels of risk
aversion.
Source: Authors’ calculations; see text.

Relative risk aversion Bond percentage HCV ratio E (IRR ) (in %) Shortfall probability (in %)

Accounting smoothing Low/γ = 2 0 80 6.20 6.96
Medium/γ = 5 40 80 3.61 1.58
High/γ = 10 80 100 4.97 0.00

Accounting and actuarial smoothing Low/γ = 2 10 70 6.60 8.24
Medium/γ = 5 60 70 4.85 0.75
High/γ = 10 80 70 4.67 0.15

Notes: Expectation of internal rate of return and shortfall probability in percent for the optimal utility-equivalent fixed life annuity for alternative scenarios. Calibration
accounting smoothing, male aged 65 in 2013; initial guaranteed Participating Life Annuity (PLA) benefits: $10,000; time preference: β = 0.96; relative risk aversion: low
(γ = 2), medium (γ = 5), high (γ = 10); GIR: 3%; mortality table: ‘‘Annuity 2000’’ (PLA present value $163,399); bond fund duration: 10 years; surplus allocation to
annuitant: 90%; equity capital endowment: 4%; solvency limit 4%; initial contingency reserve: 5%; target contingency reserve: 0%. Calibration asset and actuarial smoothing,
initial contingency reserve: 5%; target contingency reserve 10%.
Fig. 5. Effect of asset allocation vs. smoothing parameter on policyholder utility, insurer stability, and profitability for a TimePension product. Notes: Utility equivalent
fixed life annuity (FLA; in $000) that generates the same utility as a TimePension (TP) with an initial annual benefit of $10,000 for alternative asset allocation and strength
of smoothing scenarios based on a time-additive CRRA utility function, expectation of internal rate of return and shortfall probability in percent for alternative scenarios.
Smoothing Parameter: no smoothing = 0, full smoothing = 1. Calibration: male aged 65 in 2013; time preference: β = 0.96; relative risk aversion: γ = 10; GIR: 3%;
mortality table: ‘‘Annuity 2000’’ (TP present value $163,399); bonds fund duration: 10 years; equity capital endowment: 4%.
Source: Authors’ calculations; see text.
briefly compare policyholder and insurer outcomes under our
PLA approach with those resulting from an alternative structure,
namely the Danish TimePension product examined in Guillen et al.
(2006, 2013), Jørgensen and Linnemann (2011), and Linnemann
et al. (2015).

TheDanish TimePension is an investment-linked schemewhich
incorporates smoothing through formula-based reserve building.
As such, it has commonalities with the stylized two-period
smoothing model described in Section 2, but it does not draw
on the accounting techniques or (discretionary) actuarial reserve
building discussed in Sections 3 and 4. A significant characteristic
of the Danish TimePension is that it includes two accounts:
a primary account owned by the investor, and a smoothing
account owned by the product provider. Capital market returns
generated by investing the accumulated funds in awell-diversified
portfolio are shared between the two accounts as prescribed
by a documented and transparent reserve-building formula. In
case the investment return is positive, a fraction of the gain is
withheld from the investor and credited to the smoothing account.
In case the return is negative, a fraction of the loss is borne by
the smoothing account, resulting in a less adverse impact on the
investor’s primary account.

Our implementation of the TimePension smoothingmechanism
draws on a unit-linked approach similar to that in Section 2, but it
also allows for participation in mortality surpluses as in Sections 3
and 4. This extends prior studies on the TimePension algorithm
based on a term-certain framework without mortality risk. As
our approach is (fund) unit-based, we apply the TimePension
smoothing algorithm to the value of the single fund unit, instead of
the total account balance.28 To ensure comparability between the
results for our primary PLAmodel and the TimePension algorithm,
the dynamics of the annuitant population and the capital market
are identical to those described in Section 4.1.

The results of our analysis are depicted in Fig. 5. On the
left, Panel 1 shows annuitant wellbeing in form of the utility-
equivalent FLA for alternative asset allocations and smoothing
parameters, for a policyholder with risk aversion of γ = 10. On
the right, Panel 2 depicts the insurer’s success in terms of expected
IRR and shortfall probability. When the TimePension smoothing
parameter increases, both annuitants’ utility equivalent FLA and
the insurer’s expected internal rate of return increase, while the
insurer’s shortfall risk decreases. Annuitants benefit from reduced
exposure to capital market fluctuations, while the insurer gains
from retaining a fraction of the investment returns which are
positive on average. From the perspective of the annuitant, it is
optimal to choose a smoothing parameter equal to 50% and a bond
allocation of 70%, generating an optimal utility equivalent FLA of
$11,552. Under this combination of asset allocation and smoothing
level, the insurer can expect an internal rate of return of 4.8%,while
the associated shortfall probability is 4.1%.

These results are generally comparable with those for the
PLA product we study under accounting and actuarial smoothing.
There, by also choosing a mixed investment portfolio and a sub-
stantial level of smoothing, an annuitant with the same risk aver-
sion attained an optimal utility-equivalent FLA of $11,469, while

28 Technical details appear in Appendix B.
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the insurer could expect an internal rate or return of 4.67% (see
Tables 2 and 3). The PLA product does, however, result in a sub-
stantially lower shortfall probability of only 0.15% (see Table 3).29

Overall, therefore, we conclude that the transparent formula-
based TimePension approach can be a reasonable alternative
to the traditional and arguably more complex PLA product
studied in Sections 3 and 4. More detailed analyses will be
necessary to compare the pro and cons of both approaches under
various alternative assumptions regarding preferences, capital
market scenarios, and mortality assumptions, among others. Such
analyses, however, are beyond the scope of this paper, andwe leave
them to future research.

6. Conclusions

This paper investigates how alternative valuation and smooth-
ing techniques applied by accountants and actuaries to a par-
ticipating life annuity (PLA) product can influence policyholder
welfare as well as insurer profitability and stability. After showing
how PLA payout smoothing can add value to both annuitant and
insurer within a simple two-period model framework, we develop
a more complex, realistically calibrated model. The latter permits
us to explore how insurers can use accounting and actuarial tech-
niques to smooth reporting with the goal of transferring surpluses
earned in good years to support benefit payouts in bad years. Re-
sults show that smoothing increases the utility from benefit pay-
outs and also contributes to the expected returns from holding
insurer equity. Consequently, smoothing is shown to be economi-
cally attractive to risk-averse annuitants and affordable for insur-
ers.We also compare our results on the PLAwith a product recently
introduced in the Danish market, namely the TimePension. We
find that, for certain parameterizations, both approaches can gen-
erate comparable utility and return outcomes for annuitants and
insurers.

Overall, we have demonstrated that smoothing techniques
within participating life annuities can be a very attractive way
to provide retirees a guaranteed benefit along with some upside
potential in the form of surplus sharing, while handling system-
atic shocks to mortality tables and capital market uncertainty.
These findings should be of considerable current interest since
insurance company valuation methodologies are sometimes cri-
tiqued for being nontransparent and potentially conducive to in-
surer instability. Moreover, international accounting standards are
moving away from historical cost accounting toward a fair value
approach, requiring that insurers report both liabilities and assets
at market values. This movement may enhance information for in-
vestors in insurance company shares, but curtailing smoothingwill
also threaten policyholders seeking the protection associated with
long-term retirement payout products. Future research will delve
more deeply into the question of how to optimally trade off the
interests of the different PLA stakeholders.
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Appendix A. Capital market and mortality model

The portfolio of our life insurance company includes a stock and
a bond fund. The stochastic dynamics of the bond fund aremodeled
using a 3-factor CIR model of the term structure as described in
Chen and Scott (1993). In this model, the short rate rCIRt is the sum
of K = 3 independent state variables:

rCIRt =

3
i=1

rCIRi,t . (A.1)

Each of the state variables follows a CIR-type square root diffusion
process:

drCIRi,t =

µCIR

i − αi · rCIRi,t


dt + σ CIR

i


rCIRi,t dWi,t , (A.2)

where αi, µCIR
i , and σ CIR

i are positive constants and rCIRi,t > 0, if
µCIR

i > (σ CIR
i )2.

The 3 Wiener processesWi,t are independent.
The term structure of interest rates has an affine structure and

is described by:

R (t, τ ) =

3
i=1

−
log Ai (τ )

τ
+

Hi (τ )

τ
rCIRi,t (A.3)

where R (t, τ ) represents the τ -period spot rate at time t , and Ai(τ )
and Hi(τ ) are given by

Ai (τ ) =


2γie(αi+λi+γi)τ/2

2γi + (αi + λi + γi) (eγiτ − 1)

2µi
CIR/


σ CIR
i

2
(A.4)

Hi (τ ) =
2 (eγiτ − 1)

(αi + λi + γi) (eγiτ − 1) + 2γi

γi =


(αi + λi)

2
+ 2


σ CIR
i

2
where the λi are constants.

We assume that the insurer holds a bond fund with target
duration D that is re-adjusted at the beginning of each period to
maintain that target value. The price B of one unit of the bond fund
evolves according to:

Bt+1 = Bt ·


(1 + R (t,D))D

(1 + R (t + 1,D − 1))D−1 − R (t,D)


, (A.5)

with R (t, τ ) being the spot rates fromEq. (A.3). The bond fund pays
annual coupons Ct+1 given by:

Ct+1 = Bt · R(t,D). (A.6)

In addition to the bond fund, the insurer invests in stocks, with
prices St evolving according to:

St = St−1 · er
CIR
t +rRPt = St−1 · er

CIR
t +µRP

+σRPW4,t . (A.7)

Here, rCIRt is again the short rate, and rRPt = µRP
+ σ RPW4,t is

the stochastic risk premium (net of non-stochastic dividends) with
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Table A.1
Estimates of 3-factor CIR model.
Source: Authors’ calculation.

i µCIR
i αi σ CIR

i λi rCIRi,0

1 0.0092 0.2576 0.0851 −0.2036 0.0000
2 0.0014 0.3035 0.0708 −0.5642 0.0009
3 0.0122 0.3108 0.1427 0.0655 0.0188

Note: Estimates of the 3-factor CIR model based on data provided by Datastream.

Table A.2
Means, standard deviations and correlations of the capital market model.
Source: Authors’ calculation.

Vt Ct St Dt

Expectation (%) 2.30 4.21 7.89 2.63
Standard deviation (%) 11.67 1.66 18.10 –
Correlations

Vt 1 0 0 0
Ct 0.4498 1 0 0
St 0.0300 0.0865 1 0
Dt 0 0 0 1

Note: Mean, standard deviation, and correlation of bond fund Vt , coupon Ct , stocks
St , and dividends Dt . Number of simulations = 10.000.

constants µRP and σ RP and a standard Wiener processW4,t uncor-
related to Wi,t . Stocks pay an annual dividend Dt based on a fixed
dividend yield µD:

Dt = St−1 ·


eµD

− 1


. (A.8)

To calibrate the term structuremodel, we rely on historical data
on US 3-month T-bills rates and US Treasury zero yields with ma-
turities of 1 to 10 years over the period January 1988 to Decem-
ber 2012.30 We set K = 3, as a 3-factor CIR model provides the
best fit to the data when compared to alternative parsimonious
multi-factor specifications. Based on this data andmodel specifica-
tion, the calibration approach presented in Chen and Scott (1993)
produced the following parameter estimates (see Table A.1), with
rCIRi,0 the initial factor value derived from the current term structure.
Stock price developments and dividend rates are calibrated to the
S&P 500 Price Index and the S&P 500 Dividend Yield Index over the
same period (December 1981–December 2012). This produces the
following parameter estimates: µRP

= 3.28%, σ RP
= 16.5%, and

µD
= 2.6%. The insurer’s asset allocation follows a constant mix

strategy: the portfolio is rebalanced annually toward the targeted
allocationwhen assets are sold to pay benefits to the annuitants. In
case the stock exposure exceeds the target exposure, the insurance
company sells a higher percentage of stocks to pay the benefits.

When we use the calibration parameters of the asset model
described above, we use the risk and return profiles of the asset
model reported in Table A.2:

Following Cairns et al. (CBD, 2006), the stochastic dynamics of
the annuitants’ actual mortality rates qPx := q (t, x) at age x and
time t are described by:

logit qPx = ln
qx,t

1 − qx,t
= K (1)

t + (x − x) · K (2)
t (A.9)

where qx,t are the single year death probabilities, K (1)
t and K (2)

t
are period mortality indexes and x is the average age over the
considered age range. To estimate futuremortality rates, the period
mortality index components K (1)

t and K (2)
t are forecasted using a

30 Specifically, we use the following Datastream time series: FRTCM3M, FRTNY01,
FRTNY02, FRTNY03, FRTNY04, FRTNY05, FRTNY06, FRTNY07, FRTNY08, FRTNY09,
FRTNY10.
Table A.3
Calibration of CBD mortality model.
Source: Authors’ calculation.

i K0 µCBD Σ

1 −10.9033 −0.0400 0.0719 0
2 0.1011 0.0004 −0.0010 0.0003

Note: Estimated parameters of the CBDmortalitymodel based on USmortality data
for the human mortality database. K0 initial mortality index, µCBD mortality index
drift, Σ Cholesky-decomposed mortality index covariance matrix.

bivariate random walk with drift:

Kt+1 = Kt + µCBD
+ Σ · εt . (A.10)

Here, µCBD and Kt are 2 × 1 vectors, Σ is a lower triangular 2 × 2
matrix, and εt is 2-dimensional standard normal random vector.

We calibrate the CBD model to US mortality data from
the Human Mortality Database.31 This produces the parameter
estimates reported in Table A.3:

Appendix B. Overview of the TimePension implementation

In what follows we describe our approach to implementing the
smoothing formula in the TimePension product described in Sec-
tion 5. We again optimize annuitants’ utility while incorporating
the insurer’s constraints, but now we implement the TimePension
smoothing formula instead of the accounting smoothing rules out-
lined in Section 3. We retain the models describing the dynamics
of the annuitant population and the capital market. Results appear
in Fig. 5 in the text.

In accordance with the baseline multi-period smoothing model
described in Section 3 and evaluated in Section 4, we assume
that each TimePension policyholder initially pays a premium of
A0 = $163,399. The insurer invests each annuitant’s premium into
N0 = 16.3399 fund units (= ä65, calculated at GIR = 3% using the
Annuity 2000 table), with each fund unit initially being priced at
P0 = $10,000. This results in an overall initial (fund unit) reserve,
V−

0 (‘‘−’’ indicates the instant before the payout), of

V−

0 = I0 · N0, (B.1)

where I0 is the initial number of individuals in the pool. This
annuity promises each individual a lifelong stream of payouts in
terms of fund units as follows:

NoFUPayout t =
1

(1 + GIR)t
+ NoFUMortalityBonust

(t = 0, 1, . . . , T ). (B.2)
Here the guaranteed interest rate,GIR, whichwe set to 3% in line

with Sections 3 and 4, specifies the assumed interest of this unit-
linked annuity, which periodically reduces the anticipated number
of fund units paid to the annuitant as ‘guaranteed’ benefit.32
NoFUMortalityBonust represents the mortality surplus (in fund
units) paid to the annuitants as a result of realized mortality
exceeding expected mortality. This is calculated as follows:

NoFUMortalityBonust =


0 t = 0
ap · max


0; V−

t − It · Ṽt


It

t > 0,

(B.3)

31 Specifically we use the US Death Rates (Period 1 × 1), Males and Females,
Last modified: 16-Nov-2012, Version MPv5 for the period 1933–2010. See
http://www.mortality.org.
32 By reducing the number of fund units paid by GIR = 3% each year, this annuity
provides a flat payout pattern in case realized capital market returns are equal to
the GIR and mortality realizes as expected (i.e. NoFUMortalityBonust = 0). This is in
line with the baseline smoothing model in Sections 2 and 3.

http://www.mortality.org
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where:

V−

t = V+

t−1 = V−

t−1 − It−1 · NoFUPayout t−1  
Benefits paid to annuitants

− (1 − ap) · max

0; V−

t−1 − It−1 · Ṽt−1


  

Insurer ’s share of the Mortality Return

+ max

0; It−1 · Ṽt−1 − V−

t−1


  

FU purchases by insurer due to reserve shortfall

(B.4)

represents the number of fund units remaining in the reserve after
all sells/purchases at time t − 1, but before sells/purchases at time
t . The term Ṽt =

1
(1+GIR)t · ä65+t represents the number of fund

units required in the insurer’s reserve for each surviving annuitant
at time t in order to be able to pay current and future promised
benefits. The surplus allocation parameter ap specifies the fraction
of mortality surplus paid to the annuitants. The remaining (1−ap)
fraction of the mortality surplus is paid into the insurer’s equity,
which also covers purchases of new FUs in case V−

t < It · Ṽt (see
below). To be comparable with the base case we set ap = 0.9.

The market value of the fund units develops according to:

Pt = Pt−1 ·

1 + iTOTALt


, (B.5)

where iTOTALt represents the (total) FMV return (i.e. αS = 0 and
αB = 0) of an asset portfolio with pre-specified and constant
stock/bond weights. In the spirit of the TimePension approach, we
separate the fund unit market value Pt into two components.33 The
primary/personal component belonging to the annuitant is given
by:

Dt =

P0 t = 0
1 + rP


· Dt−1 + (1 − φ) ·


Pt −


1 + rP


· Dt−1


t > 0,

(B.6)

and the secondary/smoothing component belonging to the insurer
is given by:

Ut =


0 t = 0
φ ·

Pt −


1 + rP


· Dt−1


t > 0


= Pt − Dt . (B.7)

Here, φ is the smoothing parameter, which we vary in 10% steps
from 0 (no smoothing) to 1 (full smoothing),34 and rP is the
‘‘reference policy interest rate’’, which we set to rP = GIR. The
dollar amount of benefit paid to each surviving individual at time
t is then given by:

Lt = Dt · NoFUPayout t . (B.8)

In addition to the fund unit reserve, the insurer has two
positions that make up the solvency capital: a smoothing account
and equity. The value of the smoothing account at any time t is
equal to Vt · Ut , which may be negative in case Ut < 0 due to low
fund unit prices. The initial equity endowment, interest earned on
equity, and dividends paid to shareholders are equal to the setup in
the baselinemulti-period smoothingmodel described in Sections 3

33 In Guillen et al. (2006, 2013), the smoothing algorithm is applied to the total
value of a savings account, not to the value of a fund unit.
34 Guillen et al. (2006, 2013) define the smoothing parameter as α = (1 − φ),
with α = 0 representing full smoothing and α = 1 representing no smoothing.
We instead use the inverse definition to be consistent with the definition of the
‘‘smoothing parameter’’ in Sections 3 and 4, the HCV ratio, which is zero for fair
market valuation (no smoothing).
and 4. Upon paying a benefit, the value of the insurer’s equity
changes according to:

E+

t = E−

t + It · NoFUPayout t · (Pt − Dt)  
Cashed−in smoothing reserve

+ (1 − ap) · max

0; V−

t − It · Ṽt


· Pt  

Insurer’s share of the Mortality Return

− max

0; It · Ṽt − V−

t


· Pt  

FU purchases by insurer due to reserve shortfall

. (B.9)

After the last annuitant has died, the insurer cashes in the
remaining fund units. Its final position is equal to:

Et + Vt · Ut + Vt · Dt = Et + Vt · (Ut + Dt)

= Et + Vt · Pt . (B.10)

As indicated in the text, we implement this approach by
simulating 5000 independent sample paths of an insurer selling
the PLA described above to a cohort of 10,000 males aged 65 in
2013.

Appendix C. Supplementary data

Supplementary material related to this article can be found
online at http://dx.doi.org/10.1016/j.insmatheco.2016.09.007.
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